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Abstract

While enjoying demonstrated improvement in accuracy, efficiency, and robustness over

existing schemes, the Advection Upstream Splitting Scheme (AUSM) [1,2] has been found

to have some deficiencies in extreme cases. This paper describes recent progress towards

improving the AUSM while retaining its advantageous features. The new scheme, termed

AUSM +, features: (1) Unification of velocity and Mach number splittings reported in [1,2],

(2) Exact capture of a single stationary shock, and (3) Improvement in accuracy.

In this paper, we lay out a general construction of the AUSM + scheme and then focus

on the analysis of the scheme and its mathematical properties, heretofore unreported. We

prove monotonicity and positivity, and give a CFL-like condition, for first and second

order schemes and for generalized curvilineax co-ordinates. Finally, results of numerical

tests on many problems axe given to confirm the capability and improvements on a variety

of problems including those failed by prominent schemes.

1. INTRODUCTION

Seeking an accurate numerical scheme for capturing shock and contact discontinuities,

with minimal numerical dissipation and oscillations, has been a lasting challenge to the

computational fluid dynamicist as well as numerical analyst since the advent of comput-

ers. The 1980s witnessed an explosive interest and research in upwind schemes for their

capability of achieving high accuracy over a wide range of problems described by Euler

or Navier-Stokes equations. Today, upwind schemes undoubtedly have become the main

spatial discretization techniques adopted in nearly all major codes.

While much has been said in the literature about the successes and fails of various

schemes (see for example a recent survey by Roe [3]), Quirk[4] recently added an interest-

ing catalogue of situations that deny several current Riemann solvers success, serving to



increase the general level of awareness to their limitations. This report will, however, only

comment on some of these methods to the extent that is relevant to the motivations and

issues concerning the the development of a new flux scheme.

It is well known that upwind schemes are generally classified in two categories, either

flux-vector or flux-difference splittings. Flux-vector splittings (FVS) have proved to be

a simple and useful technique for arriving at upwind differencing and are pre-eminently

suited for use in implicit schemes. The Steger-Warming splitting [5] utilizes the com-

plete wave struture (the eigenvectors of the Jacobian matrix -- three waves in 1D Euler

equations), and the homogeneous property at a given state. This splitting, achieved by

grouping positive and negative eigenvalues, is nondifferentiable and leads to glitches when

eigenx_alues change sign. Fixes have been proposed to remedy this deficiency, but at the

expense of introducing excessive numerical diffusion.

The Van Leer splitting [6] uses only two waves to achieve splitting. The splitting is

made to be differentiable and gives accurate solution for many steady and unsteady inviscid

problems. Our recent experiences, to be reported separately, further reaffirm that the VLS

is quite an admirable solver for inviscid problems, in particular those involving strong

shocks and their interactions. Unfortunately the intent for making a smoother transition

at the sonic points brings an unacceptable mount of diffusion at low speed, attaining

maximum error at M -- 0. As a result, the boundary layer which has nearly vanishing

transverse velocity is significantly broadened, yielding incorrect pressure and temperature

distributions [1,7]. Owing to the same cause, significant error also appears for stationary

or slowly moving contact discontinuity. (See Fig. 5.) A strategy for eliminating the above

diffusion has been proposed in [8] in which each mass flux component is made to _mnish as

]M I = 0. This, however, turns out to be too strong a requirement for designing numerical

fluxes -- a serious stability problem crops up.

Flux difference splittings (FDS) are generally acknowledged to be accurate for both

Euler and Navier-Stokes calculations, although they are substantially more expensive than

the FVS to compute. The Roe splitting [9] perhaps is most popular of the FDS; nearly

every major code offers an option to use the Roe splitting in one form or another. A major

complaint about the Roe scheme is its need to inject an entropy fix to eliminate certain

nonphysical solutions. Unfortunately tiffs fix should be tuned between problems, inevitably

introducing superfluous dit_usivity to the viscous solution in exchange for stability. In

addition to the failings catalogued by Quirk[4], the Roe splitting is found to be unstable

for unsteady rarefaction-rarefaction waves.

The Osher-Soloman splitting [10], save its entropy-satisfying property, is found not

totally immune from difficulties. Its solution may be path-dependent on the natural or

reverse order chosen. One example where the Osher-Solomon scheme fails is again the

blunt body problem where the natural order is found to yield an anomalous solution,

although different from Roe's solution.
l

A first glance of the above summary may suggest a bleak conflict -- the simplicity

of the FVS comes at a price of reduced accuracy due to numerical diffusion, while the



FDS attains increased accuracy at a cost of decreased efficiency. The current research

is motivated by the desire to combine the efficiency of FVS and the accuracy of FDS to

arrive at ways that do away with the problem of numerical diffusion with only a small

(if any) increase in complexity. To be practically useful, such a scheme should hold ro-

bustness/stability, in addition to accuracy and efficiency, for a wide range of problems --

Euler and Navier-Stokes equations, ideal and nonequilibrium gass, and steady and un-

steady flows. Our recent attempts towards deriving a scheme meeting these goals have

proven to be quite fruitful, resulting in so-called the AUSM [1,2] and its derivatives such

as AUSMDV [11] and the present AUSM +, and the HUS [12,13]. Both AUSMs and HUS

are based upon rather different design concepts and the latter, reported earlier in [12,13] by

Coquel and Liou, will be further elaborated with a much detailed theoretical development

mid construction in a forthcoming paper [14]. Another product deserving serious attention

as well is called AUSMDV and is given with full details in [11]. The present paper is a

complement to the a,bove research, but addresses different topics of interest.

Several efforts have been attempted to improve the original Van Leer scheme, in

particular by H_kuel et al [15,16]. Van Leer, recently based on their approach [16], has made

a significant improvement [17], in which the temperature distribution of a hypersonic conic

flow is predicted accurately. Unfortunately, pressure glitch is observed in the calculation.

Thus, the effort for searching improved numerical flux functions is still continuing, striving

for the goal of arriving towards the so-called "ultimate" scheme.

Unlike the conventional flux schemes such as flux-vector and flux-difference splittings,

we begin the development of the AUSM schemes by separating the convective and pressure

fluxes. Appropriate polynomial functions for the nonlinear waves ((u 4- a) in 1D case) are

used to represent their interactions, leading to representations of the convective velocity

and the pressure at the cell interface. Finally the scalar quantity (p, pu, pH) at the upwind

location is properly advected by this interface velocity, hence the scheme is coined as the

Advection Upstream Splitting Method, AUSM for short. The new flux scheme has been

shown to yield improved accuracy, efficiency, and robustness by us and independently by

others.

Most recently, the notion of this splitting procedure has been adopted by several au-

thors [18,19] for various motivations. Jameson [18] rewrote the splitting in the form of

artificial dissipation for the central-differencing setting and chose a different set of poly-

nomial representations for splitting M and p. Unfortunately, an adjustable and problem-

dependent constant has been inserted in the formula, thereby reverting back to complaints

that upwind differencing is meant to avoid. For usual problems, a nonvaaishing constant

has to be set, leading to excessive smearing in both contact and shock discontinuities.

Halt and Agarwal [19] have experimented with a variant in which the pressure work term

is separated out from the total enthalpy, as first proposed by Steger [5,20]. The immediate

drawback of doing this is that the total enthalpy is no longer guaranteed to be conserved

when the situation so demands (see cases and related results in [21]). The conservation

of total enthalpy, not only having theoretical justification, is also proved to be critical
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in viscous calculations. Indeed, this is the very idea of Hgnel [15] for retaining the total
enthalpy in Van Leer's FVS.

Even as the original schemeAUSM enjoys remarkable success,its drawbacks also
surface. In a continuing searchfor a near-perfect (if it exists) numerical flux scheme,we
report in this paper a recent progresstowards this end. We aim at deriving an improved
flux formula by addressingsomefundamental propertiesby way of rigorous mathematical
derivation. Consequently,this new-revisedscheme,termed AUSM+, can be showneither
analytically or numerically, to saiisfy the following properties: (1) Exact resolution of a

single stationary normal shock or contact discontinuity, (2) Positivity condition, and (3)

Entropy condition. Property (1) is important not only in shock resolution of inviscid flows,

but also in boundary/shear-layer resolution of viscous flows. Property (2) proves to be

closely related to the robustness of the scheme for high speed flows and species calculation.

And property (3) selects the physically correct solution by rejecting the expansion shocks.

While these are desirable properties, none of the existing schemes axe known to possess

all of them. For example, properties (2) and (3) are violated by the Roe splitting, and (1)

and (2) by the Osher splitting. In practice, some "fixes", of little mathematical or physical

justification, have been inserted to prevent the scheme from failing. In the case of the Roe

scheme, a heavy dose of entropy fix can be prescribed to cure the "carbuncle" phenomena,

which is believed to be caused primarily by its failure to satisfy property (3).

Like its predecessor, the AUSM + is simple conceptually with close connection to

physical interpretation; it is also simple algebraically, leading to greater computational

efficiency, for it requires only O(n) operations for evaluating fluxes, n being the dimension

of the flux.

In this paper, we will give the details of the development and analysis of the AUSM +

scheme for ideal-gas flows. In a separate paper [21], we will include non-equiLibrium flows.

This paper is organized as follows. In section 2 we give a detalied derivation of the proposed

scheme and prove some relevant properties. In section 3 we analyze the numerical flux

developed in the previous section and compare it with other flux schemes. Also we present

proof of monotonicity and positivity, and the associated CFL-like condition. In section 4

we give formulas for extension to higher-order accuracy and present similar proofs as in

section 3. In section 5 an extention to the generalized curvilinear coordinates is given.

In section 6 we discuss the boundary conditions used in the calculations. Test cases are

shown in section 7 together with discussion and comparisons with other schemes. Finally

we conclude the paper with a brief remark.

2. FORMULATION

Consider as an initial-value problem the one-dimensional system of conservation laws
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for ideal-gasflows:

OU OF

o--/-+ 0-7= o, t > 0, -oo _< _ oo, (1)

u(x,0) =

where U = (p, pu, pet) T belongs to a phase space/4 E 7¢p, the inviscid flux F = (pu, pu 2 +

p, puht) T denotes a smooth mapping F : b/ _ 7_p, and the specific total energy et =

e + u2/2 = ht - p/p.

For the numerical solution of (1), we shall consider piecewise constant approximations

U_ +1 defined by the explicit 3-point scheme in conservation form

Uy +I=U_-A(Fj_+I/2-Fy_I/2), n•N, j•Z, (2)

where A = At/Ax, At and Ax being respectively the time and space steps. Here, the

numerical flux defined by

F n _ n n , (3)j+i/2 - Fj+I/2(Uj, U#+I), § U ×/A --,b/• T¢p

is assumed to be a Lipschitz continuous function and satisfythe consistency condition:

Fj+I/2(Uj,Uj) = F(Uj). (4)

In the finite-volume formulation (2)-(3), the differences among all numerical schemes

lie essentially in the definition of the numerical flux Fj+I/2 evaluated at the cell interface.

It is obvious that different numerical fluxes will satisfy different sets of criteria such as

positivity, entropy condition, differentiability, etc. and are expected to yield various degrees

of satisfaction in performance.

As a first step in the formulation of the AUSM family of schemes, we recognize the

convection and acoustic waves as two physically distinct processes, and write the inviscid

flux as a sum of the convective and pressure terms:

F = F (_) + P, (5a)

where

F (_) = cO =
ph,

\ phta

if c-"U

, if c = M,

(5b)

§ In this paper we always use the half-integer subscripts "j + 1/2",j • Z, to denote

"numerical" function f :/4 ×/A _ /4 • _P. It should not be confused with a variable

having an integer subscript "j", which indicates a function f : L/--* L/• 7¢P.
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and

P = .

Here the convective flux F (c) contains the passive scalar quantities in @ convected by the

velocity c. Depending on whether the convective speed c is chosen to be either u or M, the

vector _ has the corresponding contents. The pressure flux P contains solely the pressure

term.

One immediate question to be posed is which of the two convective speed formulas,

respectively referred to as the U- and M-splittings, is preferred. In [2], we stated that the

U-splitting was found to be more robust than the M-splitting for the shock-tube problem

since a larger time step is allowed at start, while solutions for several other test problems

gave no significant differences. On the other hand, the former smears the stationary

contact discontinuity since the interface velocity does not vanish, while the latter holds

the contact discontinuity exactly. This ambiguity actually suggests that a unified formula

should be pursued, which indeed leads to a major discovery in our continuing effort towards

improving the numerical flux. The net result is a unified formula that in addition leads to

an exact capturing of a single stationary shock. Moreover, due to a judicious choice of a

common speed of sound for defining the interface Mach number, the new numerical flux

can give rise to an exact capture of a single stationary shock.

(c)
As a preliminary, we shall express the numerical convective flux F/+I/2 at the interface

j + 1/2 straddling the j-th and (j + 1)-th cells as

F (c)
j+l/2 _" MjW1/2_J+I/2"

(6)

We stress now that, as will be seen later, it is immaterial in our development whether

we write it in terms of u or M for the unified formula. As the M-splitting may be more

familiar, we will adopt it in this section and change to the U-splltting in the next section

for a cleaner algebraic manipulation.

To define the numerical fluxes, two steps are taken. First, we define the interface

velocity and pressure by considering the nonlinear fields. Mathematically, we propose to

separately deal with the genuinely nonlinear fields (u + a, u - a) and the linearly degenerate

field (u). In this approach, the coupling between velocity and pressure, as described by

the characteristic relationships, is honored via the genuinely nonlinear fields, which will be

described in detail in §2.2. In the sequel we respectively give detailed formulas for the major

elements involved in Fj+I/2: (1) definition of _i+1/2, (2) definition of (Mj+I/2, Pi+_/2),

and (3) definition of ay+t/_.

2.1 Definition of @j+1/2
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The scalar quantities in 0i+1/2 are convected by the linear field via the interface

velocity Mj+I/2 using a simple upwinding:

@j, if Mj+I/2 >_ 0, (7)_j+1/2 - _j+l, otherwise.

2.2 Definition of (Mi+:/_,pj+:/2)

Anticipating contributions from "j" and "j + 1" states to the interface Mach number

Mi+1/2, let us write the mapping m : L/×/g _ b/E 7"4,

Mj-_ I /2 : rrt( Mj , Mjw1). (Sa)

Specifically we write Mj+I/2 as a sum of two individual components,

Mj+I/= = M + + M]-+I, (8b)

where the superscripts "+" and "-" are understood to be associated with the right- and

left-running waves.

For 1D conservation laws, the nonlinear characteristic equations are:

dx

dp-l- padu = 0, along d--t"= u ± a. (9)

This simply suggests that the velocity and pressure are closely coupled and both quantities

may be thought of propagating locally at the speeds u+a. For IM] < 1, the two waves move

in the opposite directions and interact with each other. Hence the interface velocity and

pressure, composed of the interaction of these two waves, are constructed using (u 4- a) as

basis functions for polynomial expansions. This suggests the following expansion in terms

of (M 4- 1):

M = ½(M4-1), for IMI< 1. (10)
"I

This in fact is a form of eigenvalue expansion, just utilizing the genuinely nonlinear fields.

Then from (Sb), the interface Mach number is defined, as ]M[ < 1, by

1

Mj+I/_ = _[(M + 1)1 + (M- 1)j+l].
(11)

Note that as in Van Leer's splitting, the present method heavily makes explicit use of the

eigenwalues of the nolinear wave, M 4- 1. Using the eigenvalues as a basis for expressing

the numerical fluxes is quite common in the upwind formulation. For example, it comes



naturally in the Steger-Warmingand Roe fluxes as the Jacobian matrix is explicitly ex-
pressible in terms of its eigenvalues.Specifically,Steger-Warming splitting [5] begins by

q-a) u q- a -k (u -- a) u - a q- 2('I' - 1)u

H +ua H ua u2/2

grouping F as:

F= 2-),
(12)

To remove non-differentiability of (10) when sign changes, Van Leer [6] chose differ-

entiable, second-order polynomials:

M + = +I(M + 1) 2. (13)

It is evident that the above split formula (13) results in an unsymmetric distribution of

signals propagated by the characteristic speeds (M :t= 1) as M 7_ 0 and becomes the simple

(symmetric) average as M tends to zero, leading to the formula used commonly in the

pressure-based codes for incompressible flows.

In the present study, we present a more general footing for designing the split formulas.

First we introduce the following:

Proposition 2.1: Let the respective split Mach numbers M + be chosen such that they

hold the following properties:

[M1]: M + + M- = M, for consistency.

[M2]: M + > 0 and M- < 0.

[M3]: M + are monotone increasing functions of M.

[M4]: M+(M) = -M-(-M), i.e., a symmetry property.

[Mb]: M +=MasM>I;M-=MasM<-I.

[M6]: M + are continuously differentiable.

Consequently we assert the following necessary results.

Lemma 2.1:Mi+I/2 E [Mj, Mi+I], j E Z.

Proof. Let D = (Mi+1/2 - Mj)(Mj+I/2 - Mj+I), substituting (8b) and [M1] in D gives

D = -(Mj-- - Mj_.I)(M + - M_+I) _< 0

where the product of two parentheses is nonnegative by virtue of [M3].

Remark: Owing to [M2], [M3], and [MS], it is easy to see 0 < M + < I and 0 > M- > -1

as IMI< 1.
Definition of M: The split Mach numbers given as below,

M + = / 2(M 4-[M[), if ]M] > 1, (14a)

t M_ (M), otherwise,



where

M_(M) = :l:l(M 4- 1) 2 :t: _(M 2 - 1) 2, (14b)

satisfy the properties [MII-[M6]. o reduces to the Van Leer formula [6] and is the

lowest degree polynomial continuous at M = +1. Figure I displays the distribution of M +

with various values of/3.

1.0

0.5

-0.5

-1.0

-i.......i........ i̧ ¸
i : ."-" + :oO° :: i ," iM_

_.. ; ........ ..1) .. ooo . :
: .,, o o . .

: _f °oo ° : : :

• . .ooo ° : :
• • oz . .

:: ::.." : M:-':." ..... i

-1.0 0.0 1.0

M

Fig. 1M_: vs M; solid line: /_ = 0,.--: 8 = -1/16,--: 8 = 1/2, oo :/3= 1/S.

Let

Me _ 1 1j+l/2 -- 2(Mj+I/2 4" IMj+_/2I) -- Mj+I/2( 1 -It- sign(Mj+l/2)), § (15)

combining (6), (7), and (15) gives

F (¢) = Mi+1/_ i + Mj+I/2@j+I.j+1/2
(16)

Note that as Mj+a/2 is identically equal to zero, the sign of Mj+I/2 is immaterial since the

convective flux vanishes with Mj+I/2. This also means the switching is continuous, but

not differentiable.

We remind the reader that the Mach numbers appearing in (13)-(14) need not be

based on the speed of sound at grid aj, j E Z. In fact we propose in this paper to use

a general interface value aj+l/2, which will be determined in §2.3 to achieve some unique

property.

§ We caution the reader that here the " :t= " signs in the interface Mach number have

different meanings than that attached to the cell-point definitions in (14a,b).



We turn now to the pressuresplitting in which the interface pressureis definedby

Pj+I/2 -- P+Pj q- P-j+lPj+I" (17)

Noting that we propose the use of normalized split pressure polynomials p+ : M E

T_ ---, p+(M)[0,1]. First observed in reference [22], the pressure can be expanded using the

same set of basis functions, (M ± 1), as clearly implied from the characteristic equations

(9).

Proposition 2.2: We require that the split pressures p+ satisfy the following properties:

[P1] p+ + p- = 1, for consistency.

[P2] 0 __ p+ __ 1, as required by the physical constraint that the pressure be nonneg-

ative.

[P3] p+ is a monotone increasing function of M, but p- monotone decreasing with

M, thereby aUowing proper transition for upwinding.

[P4] p+(M) = p-(-g)

[Pb] p+ = 1 as M > 1; p- = 1 as M < -1.

[P6] p+ are continuously differentiable.

Similar assertion can be made about the pressure splitting as for the Max:h number.

We now prove the following properties for Pj+I/2.

Lemma 2.2: Pj+I/_ E [O, pj + Pj+I].

Proof. The proof follows directly by virtue of [P2] and 0 _ ½(1 ±sign(M)) <: 1.

Remark: One can also show that Pj+I/e is a monotone function of both pj and pj+l, and

monotone increasing in Mj but decreasing in Mj+I due to requirement [P3].

Definition of P: The split pressures given below,

p± = { 2(1 ± sign(M)),+ if IMI _ 1, (lSa)
p_ (M), otherwise.

where

p_(M) = _(M ± 1)2(2 _: M) ± aM(M s - 1) 2, (lSb)

hold [P1]-[P6]. Clearly, +Pa=o, corresponding to Van Leer's formula, are the lowest degree
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differentiable polynomials satisfying [P1]-[P6]. The p_ vs M curves are shown in Fig. 2.
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1.0
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• .: , o : o r :, :

-.{ ......... ! .... :,,, ; /'f ,-.: ........ :

-1.0 0.0 1.0

M

Fig. 2 p_ vs M; solid line: a = 0,---: a = -3/4,--: a = -1/4, oo" a = 3/16.

Next we suggest the values of parameters (a, ,3) to be used.

Lemma 2.3- To satisfy properties [M1]-[M6] and [P1]-[P6], we have

--3/4 <o_ < 3/16,

--1/16 _<,3 _< 1/2.

(193)

(19b)

Proof. The proof is simple and omitted here.

Lemma 2.4: The parameters (a, ,3) selected on the basis of the criteria:

d2 M +

J(0) =0, (20a)

and

are

4-

d2p_ (:EI_ = 0, (20b)

a = 3/16 and _Y= 1/8. (21)

Proof. The proof is trivial and omitted here.

The curves corresponding to these values are included in Figs. 1 and 2 respectively.

These values are recommended for use as this pair have given the best performance over

many problems tested [21], including those shown in the present paper.
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Lemma 2.5: Given a boundedset K of/,/, then for every states (ML, MR) and (2f/IL, MR)

in K, there exists constants C+(fl) > 0 and C+(a) > 0, such that

Similarly,

-  L+I <-C+(Z)IML-  LI,
[MR - _r_l _<C-(5)[MR - AT/RI.

[pL+ -+-- PLI <--C+(_)IML -- MLI

IP_ -- 25_1 _< C-(_)IMR - MRI-

Proof. Referring to Fig. 1, we make use of the differentiability of M + in (14). Setting

(23a)

(23b)

dM +

= maxM  -a-if-I,
dM-

C-(fl) = maxMe_[_[

completes the proof. The proof for (23a,b) follows the same steps.

Remark: Under (19b) in Lemma 2.3, namely -1/16 _< fl _< 1/2, one easily gets C + = 1.

[,emma 2.6: The interface Mach number defined in (8a,b),

MLR "- rn(ML,MR)-- M_ + M_,

is a Lipschitz continuous function of its arguments and satisfies the consistency condition

m(M,M) = M.

It is monotone nondecreasing in its first argument, non.increasing in its second.

Proof. Theproof for Lipschitz continuity is equivalent to showing for every states (ML, MR)

and (ML, MR) in K of U that

Im(ML,MR)-- m(2tT/L, 2tT/n)] = [M + + M_ - _ML+ -- -hT/RI

- I(M+ - .Q+) ÷ (MR -- -QR)I

< ](ML -- _LI + IMn - -_/IRI.

The proof of consistency and monotone property is straightforward and omitted.

Remark: One can assume in general for higher-order formulas that

Mj+ll 2 -- m(Mi_k+l,...,Mi+k) ,

12



and similarly
pj+_/2 = p(Mj-k+_ , ..., Mj+k; pj-k+_, ..., Pi+k ),

for k > 1 and show the Lipsckitz continuity and consistency condition.

2.3 Definition of aj+l/2

Recall that we still have one yet unattended task: namely selecting an interface speed

of sound aj+l/2 in order to achieve the unified formula for both the U- and M-splittings.
To achieve this unification, it is obvious we can no longer use each respective speed of

sound, aj or aj+l, but instead should use a common one:

aj+l/2 "- a(Uj, Uj+I). (24)

In other words, the interface Mach number should be defined on the basis of a properly

defined speed of sound. Since the interface flux is viewed as a recipient of contributions

from both neighboring cells, it makes sense to use a common speed of sound evaluated

there, as a basis for determining upwinding. It is this freedom that allows us to make a

favorable choice to attain an exact capture of a single stationary shock. This concept of

using a common speed of sound is also employed in [11].

LemIna 2.6: Consider a stationary shock problem:

UL, x < xj,U = UR, x > xj,

where the normal shock relation is connected by UL and Un and uj > aj. Let a_ be the

critical speed of sound evaluated at Uj(= UL), then

aj+l/2 --a;2/uj (25)

exactly captures the shock without any intermediate states.

Proof. Referring to Fig. 3, we consider at most one intermediate

between the "L" and "R" states.

state "i"

/. i R

-7/2 1/2

Fig. 3 One intermediate shock cell between "L" and "R".
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Let us now express the numerical flux at interfaces (denoted here respectively by
:FI/2) enclosing the intermediate cell i. In order to explicitly include the undefined speed

of sound, we opt for using the velocity (U-) splitting. Similar to (8b) and (14a,b), (or

referring to [2],) we write

u-1/2 = u+L+ uT.

Assuming ML > 1 and Mi < 1 without loss of generality, (since there must be a subsonic

point connecting the supersonic point in the case of normal shock) then we have

u-1/2 -- UL -- (ui -- a-lp. )2 g+ (ui, a-1/2),

where we define

1 4fl( u =h 1)2).g+(u,a) = _aa(1 +

It is easy to show u-1/2 > 0 as UL :> ui, hence by (16) we get

m-1/2 )
F-1/2 = uLm-1/2 -'k P-l/2 ,

htLm-1/2

m-1/2 = pLU-1/2.

This flux must be balanced wfith FL as the "L" state is fixed. Hence, a simple aigebra

yields

P-l�2 PL

These two conditions can be satisfied exactly, for any (pi, pi), by requiring only one condi-

tion:

ui = a-1/2. (26)

Let us now turn to the "1/2" face. The interface velocity becomes

ul/2 = (ui + all2)_g-(ui,al/2)- (uR - al/2)_g+(uR, al/2) > O.

The inequality holds as ui > uR is expected. Again using (16) yields

ml/2 !
F1/_ = uirnl/2 + Pl/2

htirnl/2

, ml/2 = piul/2.

In order to eliminate this intermediate state, we let

Ui = UR, or (u,)Pi

Pi
(uR)= PR •

PR
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It turns out that the lasttwo requirements in the above equation respectivelyfor pi and

Pi are automatically satisfied if (26) and the first requirement, uR = ui, axe set. Thus,

a_l/2 = U R = U i.

This requirement in fact enforces the conservation of fluxes by relating the upstream super-

sonic "L" state to the downstream subsonic "R" state. It is desirable to express a-l�2 in

terms of the upstream state "L'. In fact, the well-known Prandtl relation (see for example

[23]) is at hand for use.

URu L = a*L2 = a*R2 - 2 a_
7+1

where at is the speed of sound based on the total enthalpy hr. Putting L _ j and R ---* j+l,

we complete the proof.

Remark: It is well known that insofar as determining whether an isoenergetic flow lies at

the sonic or in the supersonic or subsonic regime, the critical speed of sound defined above

can be used as a reference [23].

Note that the formula (25) is valid for UL > a*L. For a flow covering different speed

regimes, we extend the definition to:

a*) (27)
aj+l/2 = min(aL, aR), a ----a'rain(l, [u I .

That is, _ is taken to be a* when lu] < a*.

Remark: Other formulas can be also used for simplicity, but at the expense of losing the

above exact property. We have tested the following obvious alternatives:

1

aj+l/2 -" -_(aj ÷ a/+l),

aj+l/2 : a_+l,

aj+ l /2 : rnin( aj , a j+l).

Despite some expected minor differences among their solutions, no other adverse effects

have been discovered thus fax in our tests.

Remark: The above exact shock capturing property holds for any (a, _3).

Remark: The Van Leer splitting modified by the above procedure also allows exact reso-

lution of a shock, see later in Fig. 5.

Remark: Due to the above exact property, the AUSM +, like the Roe splitting, also can

not distinguish whether the discontinuity is a shock or an expansion. However, it must be

noted that except in this rather isolated situation, the AUSM + does not behave like the
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Roe scheme in other cases where the latter is known to yield unsatisfactory solutions. (See

examples 6 and 7 in section 7.) More specifically, the AUSM +, based on our numerical

experiences, does not appear to branch into an entropy-violating solution if the initial

condition is not exactly the expansion-jump condition.

In summary, the above splittings for both the advective and pressure terms completely

define the Euler numerical flux. The AUSM + algorithm can be simply summarized as

follows:

Let j and j + 1 states be given, then

(1): Mj =  i/aj+l/2, and Mj = uj+l/ai+l/2 via (27),
(2): Mj+I/2 = M + + M_+I, and Pj+I/2 = P+Pj + P-j+lPj+I,

via (15) and Pi+ /2 = a +i/2 i+1/2 \ph, i

+ P j+1/2

+ M_+I/2 pu

pht j+l

3. ANALYSIS OF AUSM +

Definition 3.1: The numerical flux defined above is rewritten as,

Fj-t-1/2 : Mj-[-1/2 _(_j -I- _[_jq-1) - [Mjq-1/2 [/_jq-1/2 _I_ -_- Pj+I/2, (28)

where (M,p)j+I/_ are defined in sections 2.2 and 2.3, and Aj+I/2{$ ) ---- {$}]+1 -- {$}j-

_rhile the associated properties of the interface quantities (M,p,a)j+l/2 have been

discussed in the last section, we will address in what follows the mathematical consequences

of the complete flux formula (28).

Remark: The first term on the RHS is clearly not a simple average of "j" and "j + 1"

states, but rather a Mach number-weighted average.

Remark: The dissipation coefficient IMj+I/2I is merely a scalar -- hence the system is

decoupled after Mj+I/2 has been defined, thus requiring only O(n) operations, in contrast

to O(n 2) operations by the other FDS.

Remark: The present scheme does not involve differentiation, specifically the Jacobian ma-

trix, in the evaluation of F1+1/2; it always involves only the common term Mj+I/2 for any

additional conservation laws. Hence, it is readily extendable to a general equation of state

and non-equilibrium flows. Again, the cost is only linearly increased with the additional

conservation equations considered. In the case of the Roe or Osher scheme in which the

Ja_:obian matrix is essential, there is a need for redefining the averaged/intermediate states

as additional equations axe included.
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We now proceed to prove some interesting numerical properties of the present scheme.

For the sake of algebraic clarity, we choose to use variable u, instead of M, in the analysis.

Recall that they are interchangeable, for j 6 Z,

U ± ± a
j+l/2 = Mj+I/2 j+l/2.

Lemma 3.1: The present splitting preserves stationary contact discontinuity.

Proof. Let pj - pj+l = P, uj = uj+l - O, and pj _ pj+l across the stationary contact.

Then Mj+I/2 = O, Pj+I/2 = P, and hence F(C)j+l/2 -- 0. That is, no non-vanishing numerical

convective flux is created at the interface. Hence, the flow remains stationary and the

contact discontinuous.

Lemma 3.2: For steady flows, the present scheme preserves the constancy of total en-

thalpy.

Proof. Assuming without loss of generality a unidirectional flow, e.g., u > 0, the discrete

continuity equation yields for steady flow,

=0

And the energy equation gives

uT+l/2pjh_j +-- 12j_l/2pj--1 htj-1 = O.

Hence, we find htj = htj-1 -" "'" :- hto, and the proof is complete.

We note that this property is not satisfied by many upwind schemes, including those

by Godunov, Roe, Osher, Steger-Warming, and Van Leer. To my "knowledge, only those

which upwind the unsplit form of the total enthalpy will preserve this quantity [1,2,11,15-

17].

Lemma 3.3: Under the CFL-like condition,

O < A[UT+l/2-4-(--u;_l/2)] <1 , )k = /kt/Ax, (29)

then (a) the density function is monotone, and (b) the scheme preserves positivity of

density.

Proof. The mass conservation yields for j e Z,

p_+l= r_ )_(f,, f, ) (30a)Pj -- ,j+l/2 -- ,j--l/2 , fp -- pu,
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where

Substituting and rewriting,

f;,j--I-1/2 + n U-- nn = Uj+I/2Pj + j+l/2Pj+l"

= )_u+_l/2P_-l + [1- ;_(u++l/_ - uT-1/2)]P_

l'_ rg .= f(p']-_,pj,pj+_,_i-_l_,_J+_l_).

+ (- uj+_/2)Pj+_

Since u + > 0, and u- < 0, f is a monotone function of its arguments (pj___l,py, pj_+l)

(29) is true.

Next since p0 > 0, Vj, (30b) immediately gives

12

pj >0, n>O, Vj,

under the condition (29). Hence, the positivity of density is preserved. And (29) is called

the I_ositivity condition. The issue of preserving positivity of species mass fractions has

also been studied by Larrouturou [24].

Remark: For linear case, u j-l�2 = uj+l/_ = u =const., it is easy to show that (29)

satisfies the TVD condition of Harten [25]. But for nonlinear case, condition (29) does not

guarantee TVD.

Remark: Let

u + = M-_jai+x/_, u; = MTaj_l/2, j e Z, (31a)

then we have the following inequality,

(31b)] +-u;.u++ll_+ (-u;_,l_) <_uj

Proof. By definition,

Then

2_++_/_= _s+x/_+ lu,+_/_l = ,,s + uj+_+ I_J-+ _i+xl

2u-j_ll 2 -- uj-zl2 --I,_j-,/_l= u+-_+ _7--lu+-, + _;I

2(..++..- _;-_1_)= _'++ u;+_- uj__+ - _,-2+ Iu+ + u;+_l+ lus+_+ u;1
+ - + - _,;+ _+- _,;+,+ u,+_1- u;<uj +ui+ 1-ui_ 1

= 2@+_ _7).
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Lemma 3.4: The above CFL-like positivity condition can be expressedin terms of a
stronger condition for a given A,

Proof. Using (31), it is easy to see that (32) guarantees (29) for a given )_.

Comparison of Well Known Numerical Fluxes

Next, we write well-known numerical fluxes in a form similar to (28) for comparison.

Roe:

Fj+I/2 = (uV)i + (uV)i+l - IA(0)1/21 +

where IJ is the Roe-averaged state, and ]A I = A + - A- in the usual sense,

Osher.:

1[ ] l[UJ+ _ 1= - IA(U)l dU + _(Pj + Pj+I). (33b)Fj_t_l/2 _ (u_)j Jr- (uCI})j+l 2 JUi

Steger-Veaxming:

Fj+ /2 = (u,I,)j 1+(u_)j+x -- _ AJ+I/_IAIU + _(Pj + Pi+I). (33c)

Van Leer/H_inel:

1[ ] 1 (33d)Fj+I/2 : 5 (M_)j + (M_I')j+_ - _ Aj+I/2IMI ¢} + Pj+I/2-

Remark: The Van Leer/H_ia_el splitting is seen also to require only O(n) operations, since

IM[ is a scalar.

Remark: The Steger-Warming and Roe splittings differ only in the evaluation of the ab-

solute Jacobian. The absolute quantity in the le_tter is evaluated using both the "j" and

"j + 1" states and is taken outside of the difference operator. In fact, this comparison

reveals clearly that a striking difference in form between the FVS and FDS lies in whether

the dissipation matrix (or scalar) is differenced.

Remark: In the above sense, the present scheme may appear formally close to a FDS, but

it differs in the averaged term. On the other hand, the method retains the efficiency of the
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Van Leer schemein defining the dissipation term. Moreover, it achievesthe high level of
accuracy attributed only to the Roe and Oshermethods, aswill be borne out by a variety

of Euler and Navier-Stokes calculations. Consequently, the present scheme is neither FDS

nor FVS, but rather a hybrid one.

Remark: It is of interest investigating the limiting form of the flux valid for the boundary

layer flow where the transverse Mach number is small, M1/2 << 1. Assuming M1/2 > O,

the y-momentum flux (cf. (28)) becomes, by retaining only leading terms:

Gj+I/2 = -_(1-2Ai+I/2M)--I-_d(1-2Ai+_/_M)A_+P(1--3-Ai+_/2PM+'"),2 (34)

where f = 15(fi + f/+_)" Since the leading terms coincide with the central-difference

approximation, the nominally first-order upwind formula (34) now tends to be second-

order accurate as M ---* 0.

Variants in Numerical Energy Flux

Furthermore, we propose another viable variation which we have found to be reli-

able. In the energy equation, the term (up) can be separated from the total flux puht.

Specifically, we suggest the following two options.

(puht)j+l/2 _- u++l/2Pjetj -}- u-j+l/2Pj+letj+l q- Uj+l/2Pj+l/2. (35a)

The terms ui+l/2 and Pj+I/2 are defined using (Sb), (17), and (27).

Or following [22], we can derive

- 2 + -- -- %
(puht)i+l/2 "- u++l/2Pjh*i + uj+l/2P.i+lhtj+l +4aaj+l/2(M; Mj - M]+IM;+I), (35b)

where the parameter a gives reise a faraily of choices. As _ = 0, we recover the basic total-

enthalpy-preserving scheme recommended in this paper. The original Van Leer splitting

h Note that the last parenthes in (35b) can take either positive or negativesets a = 2-K-4-_"

value although M-M + < 0.

4. HIGHER-ORDER EXTENSION

While the first-order schemes are simple and useful for analysis, it is generally desirable

to employ higher-order schemes. The extension, although aiming at improving accuracy,

should as well preserve those properties arrived at for the first-order scheme, such as

monotonicity, positivity, efficiency, and robustness. We will attempt to focus on these

properties in this section.

The MUSCL [26] strategy for preserving monotonicity is adopted here, via the use of a

nonlinear limiter sensing the ratio of neighboring first-differences of appropriate variables.
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Many forms have been proposed in the literature and to our experiences they all work

reasonably well although certain differences in computed results can exist. Systematic

discussion on the subject of limiters is beyond the scope of this paper. We only give

the formulas used in our calculations, acknowledging that there may be a more elaborate

choice. In [21], we will address these issues in more detail.

Following the spirit of the present method that the fluxes can be evaluated sequentially,

we avoid using the characteristic variables in the extrapolation procedure. It may suffice to

extrapolate the primitive variables W, thereby leading to a simple and efficient procedure:

wL := wi + l (rj)(wi - wj-1), w = r,

(36)

where the subscripts "L" and "/T' represent the states that take the place of "j" and "j+l"

in the formulas derived in section 2 for the first-order scheme. To take grid nonuniformity

into account, grid-size weighting can also be formulated into (36) if desired, see for example

[27]. The function ¢ is a limiter whose argument is defined as

Aj+l/=wi W = (wl,w2,ws) T = (p,u,p) T. (37)
rj = Aj_l/2Wi,

The minmod and superbee functions are normally chosen in our calculations. The effects

of limiters on either accuracy or convergence rate axe often present, but discussion of them

is beyond the scope of this paper. A note of suggestion may be warranted in the case
of viscous calculations. For the reason of maintaining uniform accuracy and convergence

rate, it is desirable that the limiters be set to unity insofar as stability is allowed, so that

physically true extrema (such as the peak temperature in a thermal boundary) will not be

clipped or the limit-cycle behavior can be minimized.

In what follows, we will show that the second-order scheme satisfies monotorficity and

positivity conditions.

Let us again consider the continuity equation written in the finite-volume form (30a),

p_+l = pjn.x(f;nj+l/2__f_n,j_l/2). (30a)

Now we write the mass flux at "j + 1/2" as

n + n U-- n
f_,j+l/2 = Uj+l/2PL + j+I/2PR,

where, by virtue of (36),

rt I + - rt n rt.¢_1-+112),
P_ = P.i + _bj+I/2(PJ -- P./-1) = PL(Pr]-I'Pj '

1 _ n
P_ Pj+I _)j+l/2(Pj+2 --Pj+I) PR(Pj+I, n .= " - " = " pj+2,¢j-+x/2)-

(38)

(39a)

(39b)
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In the above expression, we have adopted new notation for the limiters, for algebraic clarity.

¢j++1/_ = ¢(rj), ¢;+1/_ = 0(;_+ ). (40)

Note that the superscripts "+" and "-" are used to associate them with forward and

backward extrapolations, but without attaching sign values to them. Using (36), we express

the limiters as

-- Cj+I/2(Pj-1, Pj, Pj+I),

and hence the interface densities as

n n n

P_ -- PL(Pj-I,Pj,Pj+I),

Similarly, we can write

¢;+_/_= ¢;+1/_(p;,p;+x,p;+_), (4i)

ri n np_ = pR(pi,pj+_,pd+2). (42)

U n r_ _
Uj"t-1/2 = Uj-1-1/2( j--l, Uj, Ujarl , Uj_t_2).

(43)

That is, we have a 5-point scheme in (30) as expected for the second-order method. By

substitution,

+ _ 1 + _ P;-2)]-- uj-1/2 [ pj-I "k -_¢j-1/2(pj-1- .I -- -uj-1/2 [py_l__¢.;._l/2(pj+ln_p;)] ).

(44)

To utilize the simplicity found in the proof of Lemma 3.3 for the first-order scheme, we

first group the basic first-order terms, and then rearrange the remaining terms by utilizing

(37), so that the resulting equation appears formally like the first-order scheme as in (30b).

After some algebraic manipulations, we get

++ u- n u+ _ - n)p;+i n _ )_ u-- Pj 1/2P; + j+I/2Pj+I j-1/2Pj-1 -- uj-1/2Pj

_ { _ u+ ,I,+ c^_ _ - - '_-}- j+l/2Wj+l/2kFj -- Pj-1) + Uj+l/2¢j+l/2rj+ 1(Pj+l - P;)

}+ _j_i/_+r_-_J-_/_(p; - o;-_)- _i-_/_ej-_/_÷_(pj_+_ - p;) •

Or

p;-F1 = Cj_lPjn._l Jr- Cjp; '_ Cj-I-lP;_I_I,
(45)
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where

cj = 1- 7 U++ll2(2+ _'_;+_1_)+ (-_;-_1_)(2+ ¢;-v2)

+_j+x/2rS+lCj+l/2-u+-i/2_+-1/2]},
r j-1

?2j+l/2_j..k1/2 "Jr" U_-_1/2(2 _'Y_---1/2 ) ,

r j-1

(46a)

(46b)

(46c)

Definition 4.1: The second-order accurate density function in (45) and (46) is monotone

Vj and satifies the positivity condition Vn > 0 iff

Cj__ >_ O, C1>0, and, Cj+_ > O, j E Z. (47)

Let us define

and

u_i,_ <_ uj-1/2, uj+l/2 <_ um_, Vj,

u+ax -- max [Umax, 0], u_i n -- rain [Umin, 0].

(48)

(49)

We turn now to show the conditions for the limiter function and a CFL-like inequality.

Lemma 4.1: Under the following conditions,

o < ¢(r) _<2r < Cm_, (50)

and

Cma_ < 1, (51)
A(u+a_-u_i,)(l+ 2 "-

then (a) the density function is monotone, and (b) the scheme preserves positivity of

density.

Proof. Since u7+1/2 >_ O, and u-_+l/2 <_ 0, and requiring

¢_:+1/_->o, (52)

we have the following inequality,

C j-1 _>
_'_'-_/_(2 _-1/_),

2 rj-1
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and

Os+_>

This immediately yields that Definition 4.1 (47) is met iff

and

¢:+-,-li2_ ¢(r,_,) < 2, (53a)
rj-1 ri-1

1

rj_1_1¢;_1..1/2 = rj_l_l¢(r_+l ) __ 2,

_ [_++_/_(2+ + +cj= 1-_ ¢_+1/2) ¢j---1/2)
L

+ u1+l12rs+l¢i+l12 - j-_12 rj+---_j -

Using (4S), (49), and (52), one can easily show

_ [u+_::(2++ ]cs > 1 - 7 Cs+_/_)+ (-u_.<)(2 + ¢7-__/_).

Assuming 0 < _fi+1/2 < _b,,ax, the above equation leads to

Crnax) < 1.
A(U+_*--U_i")(I+ 2 "--

(53b)

(53_)

This completes the proof of (a). The proof of (b) follows immediately as in Lemma 3.3.

Hence, we see that the positivity of density can be preserved from the "second-order

(except at extrema)" scheme, (30a), (38), and (39) under conditions (50) and (51).

Remark: Similar proof can be found also in the TVD-type study. Also a weaker condition

than (51) may be possible, e.g., by admitting ¢ < 0, hence maintaining second-order

accuracy at extrema. However, this is not the purpose of the above proof and is beyond

the scope of the present paper.

5. GENERALIZED CURVILINEAR COORDINATES

This section gives a prescription for treating generalized curvilinear coordinates. To

facilitate the description, let us first define the notation for the relevant wariables in the

3D Euler equations. The physical _-ariables in a phase space of dimension 5 are denoted
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by a boldface uppercase letter or column vector whose elements are denoted by lowercase

letters.

pet pht

where et = e + 0.5(u 2 + v _ + w _) and ht = et + p/p. The geometrical vectors in physical

(Cartesian) space of dimension 3 axe denoted by an overhead arrow "-'. The fluid velocity

is

= u;+ vj + wk, (55a)

and the normal vector of the boundary surface of a control volume

(55b)

The inviscid fluxes in 3D physical space are compactly written as

(°/
pht

= _ + _ = V c)+ P, where 15-- |p_|. (56)

The first term in F is the flux of _I, convected by the fluid velocity 1_ and the second term

simply the pressure flux.

The inviscid conservation laws can be conveniently expressed over an arbitrary control

volume gt in an integral form:

---_-d.+ [,_ + _] •d_= o.
_t Oft

(57)

The discrete form, describing the rate of change of U in 12i,j, k via balance of fluxes

through all enclosing faces, Sl, l = 1,---, LX(i, j, k), can be cast as

LX

,_n÷_ ,, _,t Z(_c) + _,). 2, = 0. (ss)
_i,j,k = Ui,j,k vi,j,k l=_

In what follows, we give the algorithm for constructing the numerical fluxes in an

arbitrary finite volume, based on that described in Section 2. Let us consider the situation

in which the computation domain is divided into hexahedrons where each pair of opposing
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faces constitute the coordinates _,7/, and ( with corresponding discrete indices i, j, and

k, respectively. For the purpose of presenting the procedures, it suffices to consider one

interface ill the _-direction, whose surface vector is Si+l/2,j, k = Si+l/2,j,kf_, ff_ being

the unit normal vector and Si+l/2,j,k the area. Again, we find it convenient to use the

convention of the "L" and "R" states for representing conditions on each side of the

interface _+ l/2,j,k"

(1) Project the velocity vector at the cell centers (i,j,k),(i + 1,j,k) to _+l/2,j,k,

f_L= _,k " _¢, f_R= _+X,j,k" fie (59)

Hereinafter we use "overhead" (-) to denote quantities in curvilinear coordinates.

It is reminded that if higherorder accuracy is desired, extrapolation given in

section 4 can be adopted for V/,j,k and V/+l,j,k.

(2) Define the corresponding Mach numbers,

_L - _'L , _rR - _"_ , (60)
ai+l/2,j,k ai+l/2,j,k

with a suitable definition of ai+l/2,j,k such as (27).

(3) Define the interface convective Mach number by writing

-/_/'i+l/2,j,k "- l_fL -I" -I- -/_f/_, (6_)

where

l_r
_rL+= _( L + I_LI),

Mr(&),

if I_rLI_ 1,

otherwise,
1 -

2Q_ = _(Mn -t_rRl),
M;(MR),

if I_rRl_ 1,

otherwise.

The formula_ for M_ (M) are given in (14b).

(_) Obtain the interface pressure Pi+a/2,i,k in a similar fashion by using the above-

defined Mach numbers in (17)-(18),

Pi+l/2,j,k =Pi+l/2,j,k n_y |

i+l/2,j,k

(62)

(5) Assemble the interface numerical flux,

. = { + + }
(63)
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Lemma 5.1: The CFL-like condition of the first-order scheme for the 3D case is

At
0<_

?3i,j,k

[(_Ti_l/2,j,k Si+l/2,j,k -- _----1]2,j,k Si--1/2,J, k)'_

-+ S

as the density satisfies the monotone condition and remains positive.

Proof. The proof directly follows that in Lemma 3.3.

Remark: A similar formula for the second-order accurate scheme also can be derived, see

Lemma 4.1.

6. BOUNDARY CONDITIONS

This topic generally does not get enough space in a paper. From an analytical point of

view, the boundary conditions required to close the mathematical system are well defined.

When these analytical boundary conditions are transformed in the numerical discretization,

ambiguities and difficulties begin to compound with the interior flux schemes. While

a number of papers have been devoted to proposing and analyzing numerical boundary

conditions, unfortunately this issue still has not received sufficient investigation. Often it

is barely mentioned in a paper, and the exact implementation, where variations begin, is

generally left out. The situation is even more disappointing in the case of unsteady flows.

We also assert that there is a tight relation between the interior scheme and the

selection of apppropriate boundary conditions. In other words, the concern of compatibility

between a numerical flux scheme and boundary scheme must be observed - a numerical

boundary procedure working properly for scheme A may not be suitable for scheme B. To

our knowledge, little has been reported on this aspect.

Of various types of boundary conditions, the treatment at a physical wall (solid or

porous) perhaps is one of the most diverse among CFD practitioners, and is the one

that affects solution behavior (accuracy and convergence rate) the most if due care is

not exercised. Although this situation has been observed, to sort out the issues involved is

beyond the scope of the present paper. Nevertheless, we give in the following the procedures

used for inviscid solid wall conditions, on which all comparisons among methods are based.

A linear extrapolation of all variables from the nearest interior points (two points

in the case of second-order solution) to the wall is employed. For slip wall, we impose

the condition of zero velocity component normal to the wall to recover the Cartesian

components. In Fig. 4, we let
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and
V_ = _._.

Then a simple vector relation yields

As a result, the inviscid numerical flux is simply

/ °)Pwnw_

F_,= ff',,...aw= [pwn_y ,

lPWOwz

where p_ is extrapolated from interior point(s).

(65)

(66)
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1"7w

// / / / F /w/

-->

W

Fig. 4 Wall boundary condition.

7. RESULTS AND DISCUSSION

In this section we demonstrate the capability of the proposed numerical flux by con-

firming the mathematical consequences established in previous sections for various relevant

problems. The problems are listed below and will be discussed accordingly.

1. Stationary shock discontinuity,

2. Stationary contact discontinuity,

3. Hypersonic conical boundary layer,

4. 1D shock tube problems,
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5. 2D channelflow,
6. Blunt body flow,
7. Odd-evengrid perturbation problem,
8. Shockdiffraction around a corner.

For validation purposes,analytical solutionswill beusedasmuch asthey areavailable.
Otherwise, solution will be comparedwith that obtained by using Roe's splitting as it has
beenestablishedas anaccurateand perhapsthe most popular upwind schemein usetoday.

The first three problemsare1D steadyflows, dealingwith the capability of accurately
resolving shock,contact discontinuity, and a thin viscouslayer; the last one of thesetends
in the limit of Re _ oo to behave as a contact discontinuity. In problems 4, we axe

concerned with accuracy in calculating unsteady flows. In problems 5 and 6, we consider

2D steady inviscid flows. Finally, 2D unsteady solutions are discussed in problems 7 and

8.

In some problems, first-order solution is included. Test on first-order solution is very

meaningful for it reveals the sheer accuracy of a scheme, and the monotonicity. It is also

fundamental because the TVD schemes and higher-order solutions can be built up from

the first-order scheme.

Figures 5 and 6, respectively, show the numerical result for a single stationary shock

and contact discontinuity. The present AUSM +, like Roe splitting, is designed specifically

to produce exact solution in these cases. In contrast, the AUSM and Van Leer splittings

resolve the shock with two intermediate points. As mentioned earlier, a specific choice of

speed of sound (Eq. (25) or (27)) used in the Van Leer splitting cast also yield an exact

shock solution. Unfortunately, this modification is not sufficient to rescue the Van Leer

splitting from producing "fatty" dissipation in the limit of vanished flow speed. Figure 6

shows that both Roe and AUSM + (also AUSM) splittings give rise to exact solution of a

stationary discontinuity, while the Van Leer splitting increasingly smears the discontinuity

as calculation continues.

The quasi-lD conical flow at Moo = 7.95 over a cone of 10 ° half angle was calculated

using 64 cells. The profiles of pressure, temperature, and transverse velocity component

on 64 cells are shown in Fig. 7 for the first-order results and in Fig. 8 the second-order

results. The Roe splitting and the AUSM + give nearly identical results; interestingly the

convergence rates also show remarkable resemblance. It is noted that the first-order result

is already as good as the second-order one. To further raise curiosity, we include a first-

order coarse-grid (32 cells) result of AUSM + for comparison; the accuracy is astonishing in

that there are only about four (4) cells for resolving the extremely high-gradient boundary

layer and the shock is nearly captured exactly. Roe solution behaves identically but is not

included for the sake of clarity in plots.

Next we consider the standard shock-tube problems. Here we used 100 cells and the

minmod limiter for the "second-order" calculation. The CFL number was set 0.45. For the

Sod problem, Fig. 9 clearly demonstrates the comparable accuracy of the present and the
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Roe solution. The second-ordersolution shownin Fig. 10againconfirms the accuracy.We
also add the more difficult problems studied by Yee [28], corresponding roughly to cases
C and E in [28] in terms of density and pressureratios and initial Mach number except
without chemistry effects. The former involvesa much stronger contact discontinuity than
the Sod problem; the latter has a shock moving slowly against a high pressure region,
with characteristicssimilar to that studied by Roberts [29], and with an additional large
density jump. Figure 11begins to show the differencesbetweenresults obtained using the
AUSM+ and Roe splitting. Immediately behind the shock, the AUSM+ appearsto give
better agreementwith the exact solution of velocity. In Fig. 12, a long waveoscillation
of the Roe solution, observed by Roberts [29] and Lin [30], also appears in this problem.

Both AUSM + and AUSM results seem to be free from this behavior, but AUSM gives rise

a glitch in the solution due to a large gradient at the contact discontinuity.

We turn now to 2D calculations. First we show, in Fig. 13, the Mach contours of an

M = 1.8 flow over a 15 ° ramp. We used the minmod limiter and CFL=0.8 on 138 × 38

cells. The ramp shock is sufficiently strong so that a Mach reflection appears on the top

wall. A similar but weaker Mach stem also shows up on the bottom wall. In both cases,

a distinct shear layer emanating from the triple point can be seen. Detailed distributions

along the top and bottom walls are dispalyed in Figs. 14 and 15, among AUSM, AUSM +,

and Roe solutions; they essentially agree with each other, results by AUSM and AUSM +

nearly indistinguishable. The convergence history in Fig. 16 in terms of L2 norm exhibits

that the Roe solution stalls after having dropped about three orders, while the other two

residuals continue to decrease, also with nearly identical pace. We stress that the presented

solutions have been confirmed to be grid-independent, hence the fine-grid solutions are not

included.

Second case in this category is a standard 4% bump in a channel with Moo = 1.4.

The results were obtained using 132 × 68 cells, minmod limiter, and CFL=0.9. Again,

the profiles on the bump wail in Fig. 17 show that three solutions agree well and all give

sharp representation of three shocks, two respectively located at the leading and trailing

edge of the bump and one located further downstream and produced by the reflection of

the leading-edge shock from the other wall. The convergence history of the Roe solution

behaves similarly to the previous case, as displayed in Fig. 18, except that it stalls at a

much lower level. The AUSM and AUSM +, however, continue to behave well.

Let us now consider a supersonic Moo = 6.0 flow over a circular cylinder. This

seemingly benign problem in fact fails the Osher and Roe methods [21,30]. The so-called

"carbuncle" phenomenon by Roe's method is exhibited in front of the cylinder, as compared

with the AUSM + result in Fig. 19. Figure 20 displays the solutions by AUSM and AUSM +,

showing a crisp shock resolution at the centerline. In particular, the AUSM + exhibits the

evidence of improvement over the AUSM by eliminating the post-shock overshoot and

almost getting rid of numerical shock point. Figure 21 compares the convergence history

of various solutions, showing the effects of order of spatial accuracy, grid size, and CFL

number. It is surprising to see that the second-order method in fact converges faster than

3O



the first-order method, evenwith the shock. Finer grid makesthe convergenceslower,as
consistentwith other published results.

Next, we study a very interesting and benign problem, first reported by Quirk [4].
A plane shock is moving into a quiescent region in a long constant-area channel. The
computation grid is perturbed at the centerline by a very small magnitude, +10 -s in our

case, alternately at odd and even points. The Roe solution, seen in Fig. 22(a), quickly

develops an odd-even decoupling behavior, eventually leading to an unacceptable solution.

The present method, on the other hand, still preserves the plane shock even after a long

time, as shown in Fig. 22(b). The variables profiles along the centerline, corresponding to

the contours, axe displayed in Fig. 23 for comparison -- the AUSM + gives monotone and

well behaved solution.

The last problem is the diffraction of a supersonic moving shock over a 90-degree bend

and the resulting complex fiowfield. Quirk [4] has painstakingly shown the complexity of

the flow using grid refinement to resolve the fine details. He pointed out that there was

some numerical difficulty encountered in the use of the Roe splitting. Thus it would be

an interesting problem to test whether the present AUSM + would have the same difficulty
or even face another. First we show the density contours of first-order AUSM +, Roe, and

Godunov solutions on a 71 × 71 grid, t which is extremely coarse for revealing any intricacy.

Nevertheless, it confirms the findings of Woodward and CoUela [31] and Quirk [4] that the

Godunov scheme, as formally extended to 2D in the same manner as the other schemes

reported in the present paper, can yield discontinuous expansion fans as seen in Fig. 24(a)

this, apparently violating entropy condition, clearly causes concern. Figures 24(b) and

24(c) show that both the AUSM + and Roe splittings respectively are able to break the

expansion fans, while the AUSM + solution appears to have slightly more diverged fans

than the Roe solution. A fine grid (400 × 400) calculation was made using minmod limiter

and CFL=0.4. The result is depicted in Fig. 25. The intricacy associated with this flow

is astonishingly rich, although what is contained at this grid resolution is still not nearly

comparable to that captured by Quirk [4].

8. CONCLUDING REMARKS

In this paper we presented the construction and analysis of a new numerical flux

scheme -- AUSM +. We gave the associated mathematical properties and proved its mono-

tonicity, positivity, and CFL-like condition. We proposed a modification to the Mach

number and pressure polynomials used in the AUSM. Furthermore, a judicious choice of

numerical speed of sound for the interface Mach number was shown to give exact resolution

for an 1D steady shock and significantly improved shock resolution in 2D cases. The reli-

ability of the new scheme was evident as well in calculating some unsteady problems that

These results were obtained with the generosity of Dr. Yasu_hiro Wada who kindly

provided his code for producing not only solution but also plots.
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have failed prominent flux schemes.We also stress that in addition to the demonstrated
accuracy and reliability, the AUSM+ requires computational effort far less than the flux
difference splittings and only insignificantly more than Van Leer's flux vector splitting.
Moreover, since an exact linearization of the AUSM + flux can be derived, a consistent

implicit scheme using these 5acobians is available. Results on this aspect will be reported

in the near future.
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Fig. 13 Supersonic ramp problem; Mach number contours.
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Fig. 19 Supersonic blunt body problem; Mach contours, left: Roe method, right: AUSM +.

20

16

8 12

4

-2.0

8

6

:_4

2

-1.6 -1.2 -2.0

X

O(h2), CFL=O. 9, Minmod

A USM +

0 AUSM

0

-1.6 -f.2
X

80 8

60 6

4o _ _ 4
20- 2

-- o poo4Joooe 4Joo_oo _

0 -----.--'----.'-_ I v I 0 _ , ..l
-2.0 -1.6 -I.2 -2.0 -1.6

X X

8 0oO004bOoOgQ_

Fig. 20 Supersonic blunt body problem; second-order solution.

101 '_ _ O(h), CFL=0.5, 60x30

-_., + o O(h), CrL=O.& COx3010-2

•_,,*** --O(h2), CFL=0.5, 60x30

,., 1o-, "_: • o(,V. cpL:os. 6oxso
",o-" " '_ N o("_),c_".=o", 'zox'o

10-74 _ i ] I n i

0 4000 8000

N

Fig. 21 Convergence history for supersonic blunt body problem.

42



I I I |

Fig. 22 Odd-even gird perturbation problem; Mach contours, top: Roe method, bottom: AUSM +.
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